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Abstract— This paper presents a generic multi-processor archi-
tecture for video processing1, featuring an array of programmable
application-specific coprocessors and a programmable switch-bar
communication network. Key advantages of the platform are that the
order of functions can be changed and that video tasks can be pro-
grammed at system and functional level using tasks of any length, by
applying dynamic data-flow. This modular concept is cost-effective
and suitable for a large range of applications and features in the video
domain. The system can be well applied in combination with micro-
controllers or media processors and it is used for implementing an ex-
perimental TV platform.

Keywords—Video processing architecture, HW/SW co-design, pro-
grammable hardware, dynamic data flow, multi-window, multi-
processor, parallel processing, switch matrix, unified memory.

I. I NTRODUCTION

T
HE VLSI complexity and the corresponding software
for implementing multimedia architectures including

advanced video processing require an increasingly large de-
sign effort. Chips for consumer-electronics products are
currently being designed containing up to 10 Million gates,
having a computing power in the order of 10 GOPS (Giga
Operations Per Second) [1]. Furthermore, the correspond-
ing embedded software approaches 1 MByte for TVs. The
architecture of conventional TV sets has been introduced
more than half a century ago. Since that time, the function-
ality that was offered to the customer has been increased sig-
nificantly, without reconsidering the architecture of the sys-
tem. Feature extension boxes have been added to upgrade
the conventional system to top-high-end TV sets currently
available in the consumer market. Fig. 1 shows an exam-
ple of a conventional top-high-end TV architecture. When
standardization of the electronic television was carried out
[2], the architecture already showed the traditional standard
video path. It consisted of the demodulator, decoder and
the picture control block with a separate audio path. Since
then, an additional Teletext path was introduced, 50-to-100
Hz conversion, PALplus decoding, an additional Picture in
Picture (PiP), dual-screen, new sound standards and more

1A paper is being presented at ICCE99 by E. Jasperset al., entitled ”Chip
Set for Video Display of Multimedia Information”, describing a first re-
alization of the architecture. One of the ICs, commercially available as
SAA5810, is explained in more detail in a paper by O. Steinfattet al. enti-
tled ”TCP: A Next Generation for TV Control Processing” (Digest Techn.
Papers IEEE ICCE99, Publ. No. 99CH36277, June 1999).
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Fig. 1. The HW architecture of a conventional high-end TV set.

recently, digital transmission standards based on MPEG.
All these new features are an extension of the convention-
al implementation, resulting in a suboptimal structure. Be-
cause each function uses its own memory device and has a
dedicated communication path within the implementation,
the solution becomes very cost inefficient and rigid. These
restrictions are in conflict with occurring trends in TV appli-
cations. Requirements for the design of future TV systems
should be as follows.

• With the introduction of digital TV and the increasing use
of digital image enhancement, TV is becoming very di-
verse in terms of features, requiring a flexible and recon-
figurable system.

• TV is influenced by PC technology with respect to com-
puting techniques, SW architectures and applications.

• Since memory devices continuously become larger and



cheaper, it is desirable to have one uniform shared back-
ground memory.

• New features and standards from international bodies
have to be realized in a short time frame and require an ex-
tensible and scalable system. Parts of the necessary signal
processing are frozen, whereas in other parts programma-
bility is allowed or even exploited intensively.

• New applications in a TV set need a cost-efficient imple-
mentation, since it is a highly competitive market.

Some attempt in the past were made to deal with these re-
quirements. Full-programmable multimedia solutions like
the Multimedia Video Processor (MVP) [3] can be very
powerful, but are rather expensive for consumer products
because they are more general than the TV application do-
main desires. Full programmable solutions that are more
application specific like the Cheops processor module [4]
and the so-called Video Signal Processor [5], contain video-
specific operations but lack processing power. Both solu-
tions are based on fine-grain functional units in a recon-
figurable communication network. Since the functional re-
sources are relatively limited, the amount of parallelism is
not high enough. A recent trend is to use Very Long Instruc-
tion Word (VLIW) processors to boost processing power [6]
[7]. However, this is still not sufficient to cover all process-
ing requirements. Simply increasing the number of func-
tional units would increase the present scheduling problem
for such solutions.

More powerful implementations are possible by adapting
the system more closely to the target application domain.
As a result, the processing performance and efficiency can
be increased by making use of the function-level parallelism
that is expressed in a designers signal flow-graph (SFG) of
the application. The grain of the operations within a func-
tional unit is increased to the level of complete TV functions
like a scaler, noise reduction, sharpness enhancement, field
rate conversion, etc.

II. PROBLEM STATEMENT

A. Computational effort

Let us now analyze why the aforementioned processor sys-
tems were not directly adopted in current TV systems, al-
though it seems that the required applications could be im-
plemented on a fully programmable multimedia processor.
One of the questions to be answered is how much com-
puting power should be realized. For this reason, a num-
ber of typical TV signal-processing functions were stud-
ied and computational and memory requirements were eval-
uated. Table I shows the intrinsic processing power of
several TV functions at standard definition (SD) resolution.
With respect to operation counting, additions, multiplica-
tions, sample read and writes, etc., are considered as single
operations. The fourth column shows the amount of mem-
ory or cache required. Here it is assumed that information
can be retrieved or stored by single reads and writes (which

TABLE I

EXPENSES OF VARIOUSTV FUNCTIONS.

Function Operations Bandwidth Memory/
per Second MByte/sec. Cache

H zoom / compress 400 MOPS 38–64 samples
V zoom / compress 400 MOPS 38–96 lines
Filters, Comb filters 200 MOPS 64–128 samples-field
Advanced peaking 650 MOPS 32 lines
Color transient 300 MOPS 48 samples
improvement
Dynamic noise 500 MOPS 64–128 field
reduction
MC-100 Hz 2–4 GOPS 192-256 2–3 fields
Color space 150 MOPS 80 None
Teletext conversion 10 MOPS 48 > field
Adaptive luminance 60 MOPS 32 1 KByte

is optimistic). For a normal TV application with 50-100
Hz conversion, Picture-in-Picture (PiP), noise reduction and
aspect-ratio conversion, the amount of operations already
exceeds 6 GOPS (Giga operations per second). This is not
readily implemented on a general-purpose processor cost-
effectively. Consequently, the use of application-specific
coprocessors to increase parallelism and local computing
power, in combination with general-purpose processing is
unavoidable to keep system costs low.

B. Memory considerations

Because memory functions determine a significant part of
the system costs, the access and the amount of memory
are important optimization parameters in the system design.
For the same reason, the distributed memory as shown in
Fig. 1 is not acceptable in future products. To create a cost-
efficient solution, one uniform background memory is used,
based on a standard off-the-shelf RAM. To avoid excessive
memory access, the processors have small local cache mem-
ories, e.g. a vertical-filter coprocessor may have line memo-
ries locally. The caching of field memories for e.g. MC-100
Hz conversion, dynamic noise reduction or comb filtering is
too expensive for on-chip integration as embedded memory
(1 field = 4 Mbit). Instead, these functions are integrated in
the large unified memory in the background. However, the
consumption of already scarce bandwidth to this memory
should be monitored. Furthermore, the architecture should
enable direct communication between processors without
necessary access to external memory. This approach limits
the memory access to functional usage. Generally, only sys-
tems that use large packets to communicate data (e.g. video
field/frames) for high-throughput communication between
multiple processors, need extreme fast communication net-
works with a high bandwidth and a considerable amount of
additional memory. Examples of such systems are given in
[6] and [8].

Although the memory requirements of the desired system
are optimized, typical memory sizes would still be 4–16 M-
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Fig. 2. An example of a signal flow-graph (SFG).

Byte with a bandwidth in the order of 350 MByte/s. For
such memory devices, the synchronous DRAM (SDRAM)
represent the mainstream market, offering the lowest price
per Byte. However, for high-bandwidth applications, the
newer but more expensive double-data-rate DRAM (DDR
DRAM) and Direct Rambus (Direct RDRAM) devices are
an alternative. However, for an efficient data transfer, these
devices should be accessed for bursts of data instead of sin-
gle data words, due to the overhead in the addressing. Since
multimedia processing stores mostly neighbouring data of
the actual sample in memory (spatial locality), multimedia
memory caching can be used to reduce the address over-
head. When performing signal processing on video sam-
ples, it is desired to have a high peak bandwidth with low
latency. Therefore, the low-density static RAM (SRAM) is
used at the on-chip cache level.

III. A NALYSIS OF TV APPLICATIONS

In this section, the TV applications are further analyzed with
respect to the timing requirements in order to motivate the
design of the new chip architecture. Prior to discussing the
details, the concepts of graphs and tasks are introduced, as
they will be applied extensively in the system analysis.

A taskis a basic TV function, a set of closely coupled cal-
culations, which are executed on a stream of data samples
(a video signal). The set of TV functions is well defined for
the high-end TV system. Tasks areweaklyprogrammable,
that is, they can be set to different video quality levels with
different resource requirements, but the nature of the func-
tion itself cannot be modified. For example, a filter can be
programmed to a smaller length resulting in a lower quality,
thereby reducing local memory usage. This memory can be
re-used for other filter tasks.

A graphconsists of a set of TV functions (and thus tasks)
which should be executed in parallel. It represents an ap-
plication in the TV domain, e.g. a main video signal with a
PiP in the upper corner.

The first step in coming to a new architecture is to clas-
sify the different tasks into three groups:control, soft real-
time andhard real-timetasks. Examples of control tasks

(CT) are user interactions such as channel switching and
user menu generation, a modem function, etc. Control tasks
are related to the interaction of the system with the envi-
ronment. The second group contains soft real-time tasks
(SRT). Key aspect is that such tasks have a ”soft” real-time
deadline, meaning that a deadline can be missed and is not
critical for the system performance. An example is the de-
coding of a Teletext page.

Hard real-time tasks (HRT) should not miss their dead-
line, since this would directly lead to system malfunction-
ing. Typical hard real-time tasks are most video process-
ing operations, since output pictures have to be displayed at
predetermined time intervals (field rate). Examples are hor-
izontal and vertical sample-rate conversion, sharpness en-
hancement, noise reduction, etc.

Hard and soft real-time tasks can be represented in a
signal flow-graph (SFG) as shown in Fig. 2, which por-
trays two input video streams (HRT) and one Teletext page
(SRT). The results are displayed in three different video
windows on the screen. The user can manipulate several
features (size, position, shape) of the smaller windows.

The hard and soft real-time tasks that require a large com-
putational effort are mapped onto more dedicated proces-
sor hardware to increase the amount of parallelism. This
approach was adopted to come to a cost-effective system
design, enabling a large programmable set of applications
with a single chip. In [9], it was discussed that a fully pro-
grammable architecture for a broad range of TV applica-
tions is far too expensive for consumer television. Although
the aforementioned application-specific (co)processors are
weakly programmable and are able to process various tasks,
the type of task is fixed, e.g. a sampling-rate converter can
perform aspect-ratio conversion, scaling, geometric correc-
tions or data compression, but cannot do noise reduction or
sharpness enhancement. The system requires an architec-
ture which provides multi-tasking capabilities, because sev-
eral different tasks have to be processed simultaneously by
the same coprocessor.

Let us now summarize the results of the analysis of the
set of TV functions and the computational estimations from



the previous section and find implications for the architec-
tural design.
• The required computing power is in the order of 10 GOPS

(see Table I).
• If all the communication between tasks in a typical flow-

graph are accumulated, several GByte/sec required band-
width is obtained. Each full-color video channel requires
32 MByte/s bandwidth (at 50-Hz field rate, see Table I).

• The constraints for hard real-time streams must be met
under all conditions. This requires worst-case design of
the architecture for this part of the system.

• One of the disadvantages of current rigid TV architectures
is that signal-processing functions cannot be used in dif-
ferent orders (see Section 1). Such a feature would enable
an optimal TV quality setting under all conditions with-
in the limits of available resources. The new architecture
should offer this flexibility, i.e. the feature to construct
different flow-graphs with the same set of TV functions.
Analysis has shown that about 100 different graphs exist
for common high-end TV applications.

• The resulting quality of the performed video tasks should
be scalable to adapt to the amount of available hardware
resources (computing power and bandwidth). The quality
depends therefore on the chosen flow-graph. For exam-
ple, if only one video stream is being processed, all video
functions can be switched to the highest quality level, re-
quiring e.g. the best filters or most advanced processing
(computationally intensive for each task). If two video
streams have to be processed, the same video task can ap-
pear twice in the flow-graph, so that each TV function is
executed at medium quality. This might be acceptable,
e.g. a PiP application does not require the same video
quality as an application with one main video plane. More
precisely, the video streams are processed at the clock rate
(64 MHz), but can have four different pixel rates: 16, 32,
48 and 64 MHz. Each coprocessor can process a number
of streams in parallel, given by the following expression:

n16

4
+ n32

2
+ n48

3
+ n64 ≤ 1 (1)

wheren16 represents the number of streams with 16-MHz
pixel rate,n32 stands for the number of streams with 32-
MHz pixel rate, and so on.

• The system should be capable of processing a minimum
of two real-time input video streams, because our aim is a
multi-window TV system. The clocks of the streams are
not related (asynchronous), as they originate from differ-
ent sources.

Up to this point, signal processing and its requirements
were discussed primarily. Let us now concentrate on the
memory which is associated with the signal processing. As
was discussed in subsection II.B, the objective is to use one
single unified memory. Summarizing the most important
reasons for this:

• memory re-use: if functions are switched off, memory can
be assigned to other tasks;

• costs: off-the-shelf large-scale memory components give
low system costs.

An experimental system implementation is based on a
memory bank of 96-MHz Synchronous DRAMs. For 32-
bit words, this gives a theoretical bandwidth up to 384
MByte/s, which is lower than the maximum requirements
mentioned in Section II. Therefore we make a distinction in
the communication requirements, similarly to the distinc-
tion in tasks. Some communication channels do not need
access to external memory and can be kept on chip. For oth-
er functions, especially those requiring complete field mem-
ories, access to external memory is inherent to the function,
such as temporal noise reduction. Another example is the
synchronization of two independent video streams, requir-
ing a video frame memory (the mix task in Fig. 2). Since
memory bandwidth is a scarce parameter, external memo-
ry accesses are indicated in the signal flow-graph: they are
modeled as extra inputs and outputs to the graph. Further-
more, the graphs are cut at points where frame synchroniza-
tion takes place. This leads to the graphs as shown in Fig. 3.

By cutting the flow-graph into pieces, we have implicitly
introduced an additional concept, called subgraphs. Asub-
graphis a set of closely connected tasks, where all commu-
nication between the tasks belonging to the same subgraph
takes place via on-chip communication. Inputs and outputs
of subgraphs are either regular input/output streams or ac-
cesses to external memory. Communication between two
different subgraphs always takes place via external memo-
ry.
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Fig. 3. Examples of subgraphs, corresponding to the flow-graph in Fig. 2.

IV. A RCHITECTURE DESIGN

The application analysis of Section III and the computation-
al requirements of Section II are starting points for design-
ing the architecture. We have discussed sets of tasks being
combined into graphs, and the associated memory commu-
nication. Consequently, the architecture contains principal
modules and their components, and as such, it has a hier-



archical structure. Let us therefore start at the top of the
hierarchy.

A. Top-level architecture

Since the properties of control and the signal processing are
totally different, we will define three different subsystems:
a control subsystem, a signal-processing subsystem and a
memory subsystem. The control subsystem is responsible
for the execution of all control-oriented tasks and some of
the soft real-time tasks. The signal-processing subsystem
executes all hard real-time tasks and some of the soft real-
time tasks. The memory subsystem performs the memory
functions for both the system control and signal processing.

The nature of the processing is totally different. The con-
trol subsystem is based onevents. It has to deal with un-
predictable events coming from the environment. There-
fore, it sendsrandomrequests to the memory subsystem.
The signal-processing subsystem is characterized by the pe-
riodicity of the operations. It sendsperiodicrequests to the
memory subsystem. The top-level architecture is visualized
in Fig. 4.
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Fig. 4. The top-level architecture.

The principal design step at the top-level concentrates on
the arbitration between the two types of requests. The dif-
ficulty is that different aspects have to be optimized. In the
case of random requests, thelatencyshould be minimized.
In the case of periodic requests, thethroughputof the sys-
tem has to be guaranteed, because all hard real-time tasks
are mapped onto the signal-processing subsystem which is
periodic. Thus, in the case of periodic requests we want
to design for the throughput that should be obtained. The
latency is less relevant, since it can be hidden if sufficient
buffering is provided.

Summarizing, an arbitration scheme is needed that en-
sures the throughput for the periodic requests, while mini-
mizing the latency for the random requests. For our system,
we used an arbitration scheme from [10], that provides a

low latency and high-priority access for the microcontroller
and ensures the required bandwidth for the video signal pro-
cessors.

B. Signal-processing subsystem

The tasks to be performed for a complete SFG in a TV
set can be classified globally into two groups: tasks requir-
ing a similar type of signal processing and tasks which are
both different from functional and signal-processing point
of view. Examples of the first group are horizontal com-
pression for PiP and aspect-ratio conversion. The required
type of signal processing is sample-rate conversion in both
cases. Examples of the second group are noise reduction
and sharpness enhancement which are essentially different
in most algorithmic aspects. Using the previous distinction,
a number of choices can be made for the new architecture.
• After functional decomposition a task is mapped on a sep-

arate processor if they are different and is mapped on the
same processor otherwise.

• Since the tasks are known in advance at design time, each
processor can be optimized for a particular job.

• To allow the mapping of different graphs, a reconfigurable
communication network is added. This means that signal-
processing functions can be used in various orders and can
be programmed.

The result of the architectural choices is that a heteroge-
neous multiprocessor architecture is obtained, which is ca-
pable of true task-level parallelism. The architecture is
shown in Fig. 5. This will now be discussed in more de-
tail.
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First, it can be noticed that all processors are surround-
ed by FIFO buffers at their inputs and outputs. The aim is
to separate signal processing from communication, so that



the activity of the processors is de-coupled from the com-
munication network. Second, the choice for FIFO buffers
is motivated. They have been adopted because the arrows
in the SFGs (callededges) represent streaming (video) sig-
nals, i.e. measurable physical quantities sampled at discrete
points in time and binary encoded. The only identification
of the different samples in the stream is given by the order of
the samples. Samples are produced only once and cannot be
lost on the communication channels. For streams with the
aforementioned features, separation of communication and
processing can be well be performed with FIFOs. Third, the
architecture is based on a dynamic data-flow model (DDF),
instead of synchronous data flow. The reasons are as fol-
lows.

• Analyzing the tasks in an SFG, some video signals
cover the full display, while others cover a only a
part of the screen, such as a PiP. In many stages, the
amount of computations is proportional to the amount of
samples processed. Therefore, a surplus of compute pow-
er can be used to make a processor available for alterna-
tive tasks. Such task switching is more difficult with static
synchronous systems.

• The field blanking, i.e. the non-active vertical part of a
video signal, can be used for soft real-time tasks. The
detection whether a stream is in the blanking or not is a
run-time decision, since input streams are asynchronous
with respect to each other. This re-use for soft real-time
tasks is easily implemented with a dynamic stream based
model.

• A stream-based computing model is often simpler to im-
plement in comparison with a static synchronous system,
because it can perform run-time scheduling based on local
availability of data.

• The concept is better scalable with respect to the addition
or removal of processors. It is expected that processors
will become increasingly dynamic. A good example is a
variable-length decoder, which produces and consumes a
data-dependent number of tokens.

Let us now discuss briefly how the signals will flow in the
DDF model. The communication behaviour is such that the
signal channels can be blocked locally (blocking semantic),
according to the DDF model. A local processor is stopped
when the output FIFOs are full or the input FIFOs are emp-
ty. The decision is performed locally in the shells surround-
ing the processors. Furthermore, the output FIFOs must be
blocked when the input FIFOs are full. This is done by
implementing areversenetwork. So far, resource sharing,
that is, the re-use of a processor for another task was only
mentioned but not yet taken into account. For the model, a
one-to-one correspondence between tasks in the graph and
processors in the architecture has been assumed. In the fol-
lowing subsection, resource sharing will be discussed.

Resource sharing is desirable in order to obtain a flex-

ible and a scalable architecture. Three different forms of
resource sharing are distinguished. First, different tasks can
be executed on the same processor. This leads to the proces-
sor model discussed below. Second, FIFOs can be shared,
but this is avoided, because deadlock may occur in the mul-
tiprocessor system. Third, resources in the communication
network can be shared. This option is also discussed below.
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B.1 Processor model

The same function (e.g. horizontal sampling-rate conver-
sion, HS) can appear more than once in an SFG. For cost
reasons, these conversions will all be executed on the same
HSRC processor. However, there are some limitations that
will be explained now.

The processor model portrayed by Fig. 6 has two input
portsI(p) and two outputO(p) ports. This could for exam-
ple be a temporal noise reduction coprocessor that needs an
input video signal and the filtered result from the tempo-
ral loop as inputs and has a video output and a backward
channel to memory as outputs. Each input and output port
is connected to four FIFOs, labeled 1-4. When a task is
started, one or more FIFOs are assigned to this task at each
input and output port. The number of assigned FIFOs to a
task is dependent on the required amount of bandwidth and
is explained in more detail in the next subsection. As long
as the task is active, the assigned FIFOs are only process-
ing data corresponding to this task. Associated with each
task, a local memory state exists, calledstate space. Thus,
according to the depicted model, two different state spaces
can emerge, where each state space is assigned to a particu-
lar function. As a result, this model can start up to maximal
two tasks in parallel (the experimental chip discussed in [9]
can perform one to three parallel tasks, dependent on the
coprocessor).

B.2 Communication network

The task of the communication network is to provide suffi-
cient bandwidth for the data streams between the output and
the input FIFOs. For every connection in the SFG, a path is
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created in the programmable connection network in Fig. 5
for transport of the data. The path is created using circuit
switching.

The network is a so-called TST network with space and
time switches. The reason to build such a network is to guar-
antee non-blocking connections between output FIFOs of
processors and input FIFOs of succeeding processors, with
a predetermined amount of bandwidth for each connection.
Fig. 7 shows a space switch at the left-hand side making a
connection betweena2 andb3 and another connection be-
tweena4 andb2. At the right-hand side of Fig. 7, the same
connections are shown using a time (T-)switch. At the in-
put, a multiplexer is added and a demultiplexer at the out-
put. Using four time slots, the total bandwidth equals the
sum of bandwidths of the individual channels. This leads to
the TST network as shown in Fig. 8. As an example, two
paths through the network are indicated. Each path is pro-
grammed by putting the correct code for the three different
parts of the network. A table with four different time slots
is used. For example, thex connection is programmed in
phase two via the correct code at the positions labeled with
an x. This way, bandwidth is allocated corresponding to
one phase. The connection labeledy has twice the band-
width of one channel, because it is programmed during two
phases. The programming flexibility ensures that sufficient
bandwidth can be provided for particular stages or signals
in the SFG.

B.3 Interaction between controller and processor

Also interactive communication is necessary to adapt the
TV function to the content of the video signal, e.g. the
noise-reduction processor measures a significant noise in-
crease, communicates this property to the CPU, which is
subsequently programmed by the CPU to perform more
noise reduction. For this type of event-driven communica-
tion, one interrupt (irq) line to the CPU is used. The signal-
processing subsystem contains a large range of interrupts to
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cover all possible events. Each interrupt is represented by
one bit in a memory-mapped interrupt register. The CPU
receives an interrupt if one of these bits indicates an ”irq”
by means of a hardware OR function. Subsequently, the
CPU may read the interrupt registers via the interrupt ser-
vice routine in order to identify which event has occurred.
The ”irq” is then acknowledged by resetting the correspond-
ing irq-bit in the memory. This general communication pro-
tocol is visualized in Fig. 9. The interrupt mechanism is al-
so used when processing generates erroneous behaviour or
when signals are not in accordance with specified video for-
mats. Since all interrupts generated by the signal-processing
subsystem operate at video field rate and can be disabled
individually, the interrupt rate to the microcontroller sys-
tem can be kept sufficiently low. This optimization is ad-
vantageous, because interrupts increase the communication
overhead (context switching). Adaptation of the processing
is sufficient at field frequency, since it provides sufficient
response-time of the system. This also gives ample time for
the microcontroller system to perform other tasks, such as
e.g. modem communication.

V. M EMORY

A. Subsystem communication

As was mentioned in section II, a cost-effective solution re-
quires one uniform background memory that is based on a
standard off-the-shelf RAM. The RAM can be accessed by
both the CPU and the coprocessors. An attractive property
of the system architecture is that the control-subsystem and
the signal-processing subsystem can be used as stand-alone
devices, because they provide there own control for opera-
tion. Both systems are favorably combined into a powerful
full-featured system by a connection via the memory bus, as
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depicted in Fig. 10. This enables communication between
the CPU and the signal-processing subsystem by means of
memory-mapped I/O. One unified memory map is applied
in which all parameter and operation-mode registers of the
coprocessors are located. The CPU can access all the pa-
rameter registers to program the coprocessor settings and
derive information from the processors and/or the signals
being processed.
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Fig. 10. Stand-alone systems and a combined system with unified memory.

Since in the architecture proposal a single memory is
used, bandwidth limitations are likely to appear. Some mea-
sures have been taken to relax this so-called von-Neumann
bottleneck [11]. As an example, the frequency of the mem-
ory bus is twice the frequency of the CPU, whereas the bus
width is equal to the word width of the CPU (32 bits). Fur-
thermore, coprocessors can be programmed such that mem-
ory access can be reduced at the cost of some quality. These
aspects are discussed in the following subsection.

B. Memory resources versus quality

New applications for the system are mainly limited by
the computing power of the resources, the bandwidth of the
coprocessors, and the bandwidth of on-chip and external
memory. Consequently, special attention should be paid to
the architectural design of the communication network. As
was mentioned in Section II.B, communication for video
signals via the memory should be limited to large memory
functions only, e.g. the field delays for temporal noise re-
duction and field-rate conversion. Additional key issues in
the design of the communication architecture that have a di-
rect impact on the memory resources are listed below.

Local FIFO buffers , which are relatively small, located at
the input and output stage of all coprocessors (see Fig. 5),
enable date exchange between coprocessors without access
to the external background memory. This significantly re-
duces the bandwidth requirements of the external memory.

Mixing or juggling of video streams is designed such that
it requires a minimum amount of memory bandwidth. In
the background memory, two field blocks (for interlaced
video) are allocated to construct the composed video frame.
These memory blocks are filled with the odd and even fields
of the picture, except for the pixel positions where another
overlapping video window will be positioned. This unused
memory area in the memory is used by a second video path
to write the overlapping video window. Consequently, the
total amount of data stored is equal to the data of one com-
plete picture instead of the sum of individual pictures. Simi-
larly, the total required bandwidth approximately equals the
bandwidth for writing one complete stream instead of the
sum of the bandwidths of the individual video streams.

Bandwidth equalization is used to decrease the required
peak bandwidth. Equalization in memory read/write tasks
is obtained by spreading the data transfer of an active video
line over the time of a complete video line including the
horizontal blanking. Common video signals contain 15 %
horizontal line blanking, leading to a similar reduction of
the peak bandwidth.

An additional system aspect besides the aforementioned key
issues, is the desire to realizescalableprocessing power,
in order to enable the exchange of bandwidth with picture
quality. Some examples are given below.

Vertical scaling at high quality requires that the interlaced
input video is converted to progressive video prior to sam-
pling rate conversion. As a result, a necessary background
memory function is to write interlaced video fields and to
read the odd and even video lines progressively. Subse-
quently, de-interlacing should be applied prior to the scal-
ing. After scaling the progressive frames, they are inter-



laced again, by removing the odd or even lines before the
final result is communicated to the rest of the system. The
memory requirements for such a vertical scaling task are
significant. At least one field memory is necessary and a
memory bandwidth of three times the bandwidth of one s-
ingle interlaced video stream is required to write interlaced
and to read progressive video. To save some memory re-
sources, it is possible to scale the interlaced fields, thus to
perform intra-field processing instead of inter-field process-
ing. This would decrease the picture quality at the gain of
memory resources.

Graphics generation in the background memory requires
a field or frame memory, depending on the desired quali-
ty. When a field memory is used and the content is read for
both odd and even fields, the amount of memory is reduced
at the cost of some loss in vertical resolution. Since synthet-
ically generated graphics may contain high spatial frequen-
cies, the use of a frame memory may result in annoying line
flicker when the memory is displayed in interlaced mode.
Moreover, it is also expensive in terms of memory size. For
50-60 Hz interlaced video, a field memory is most attractive,
whereas for field rates higher than 70 Hz, a frame memory
could be used for high-resolution graphics.

VI. CONCLUSIONS& A PPLICATIONS

This paper presents a video processing architecture with
high parallelism, based on a programmable array of copro-
cessors and a communication network. Function-specific
hardware coprocessors perform pixel-based processing and
are programmable at functional and system level. A switch
matrix enables parallel processing of tasks and enables
high communication bandwidth. Since the matrix is pro-
grammable, the order of signal processing tasks can be
modified (programmable signal flow-graph) to realize new
TV applications. Individual coprocessor processing pow-
er and performance can be adapted and optimized for each
TV application flow-graph. The architecture uses an exter-
nal background memory which combines all large memory
functions. This memory is shared with a microcontroller.
Each coprocessor has some local video memory, in cor-
respondence with the function carried out, to avoid severe
memory-bandwidth problems.

A novelty of the architecture is the use of dynamic data-
flow for video processing, in combination with application-
specific processors. In the concept, processors perform in-
dependent processing and data streams are exchanged via
small local buffers. These buffers can start and stop the
processors dependent on whether a buffer is full or empty
while additional communication rules avoid deadlock prob-
lems. The advantage of this system is that video processing
functions can be handled as tasks of any length. Thus video
frames of various sizes can be applied in the system without

low-level reprogramming of the hardware. If a task is termi-
nated, processor hardware becomes available for alternative
tasks.

The proposed system can be applied in a large set of ap-
plication domains containing component video processing.
For television, the architecture has been implemented in
two experimental chips, a microcontroller and a coproces-
sor array. The microcontroller performs set control, Teletext
and graphics, modem and low-speed data communication.
The coprocessor array contains functional units for hori-
zontal and vertical scaling, sharpness enhancement, motion-
adaptive temporal noise reduction, graphics blending, mix-
ing of video streams and 100-Hz up-conversion. Due to the
flexibility of the coprocessors and the programmability of
the signal flow-graph, the application range not only covers
the intrinsic integrated functions [12], but also aspect-ratio
conversions, PiP, a mosaic screens, pixel-based 2D graphics
for PC-like applications, etc. In fact, the chip set enables
all these features in a multi-window TV environment with
high quality. As an example, Fig. 11 shows the resulting
displayed picture of the the TV application visualized by
the signal flow-graph in Fig. 2.

Fig. 11. Example of a multi-window application.

The modularity of the architecture concept allows that
other advanced functions can be added easily in the form
of new application-specific processors, e.g. MPEG decod-
ing and 3-D graphics rendering. For consumer systems, it
is possible that the architecture can be used for a number
of years to come, due to its cost-efficiency. As technolo-
gy proceeds and the demand for flexibility increases (e.g.
MPEG-4, MPEG-7), the low-complexity and irregular pro-
cessing functions will be implemented in software on ad-
vanced microcontrollers or media processors, so that corre-
sponding coprocessors will disappear. Combining the pro-
posed platform with such generic processors is attractive,
because a hardware-software trade-off can be made. At the
same time, it is expected that new computationally expen-
sive functions, requiring specific hardware support, can be
introduced.
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